import cv2 as cv import numpy as np from matplotlib import pyplot as plt img = cv.imread('screen.jpg', cv.IMREAD_GRAYSCALE) assert img is not None, "file could not be read, check with os.path.exists()" img2 = img.copy() template = cv.imread('bobber.jpg', cv.IMREAD_GRAYSCALE) assert template is not None, "file could not be read, check with os.path.exists()" w, h = template.shape[::-1] # All the 6 methods for comparison in a list methods = ['TM_CCOEFF', 'TM_CCOEFF_NORMED', 'TM_CCORR', 'TM_CCORR_NORMED', 'TM_SQDIFF', 'TM_SQDIFF_NORMED'] for meth in methods: img = img2.copy() method = getattr(cv, meth) # Apply template Matching res = cv.matchTemplate(img,template,method) min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res) # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum if method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]: top_left = min_loc else: top_left = max_loc bottom_right = (top_left[0] + w, top_left[1] + h) cv.rectangle(img,top_left, bottom_right, 255, 2) plt.subplot(121),plt.imshow(res,cmap = 'gray') plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(img,cmap = 'gray') plt.title('Detected Point'), plt.xticks([]), plt.yticks([]) plt.suptitle(meth) plt.show()